# Computing the $K_L$ - $K_S$ mass difference in Lattice QCD

Jianglei Yu

RBC and UKQCD Collaborations

May 15 2012, BNL

#### Outline

- Introduction
- Summary of the method
- Setup of the calculation
- Short distance effect
- Long distance effect
- Mass difference
- Conclusion and future plans

## Introduction

•  $K^0 - \bar{K}^0$  mixing:

$$\Delta M_K = 3.4583(6) \times 10^{-12} \text{ MeV}$$

- Perturbative calculation can explain 70% of the mass difference
- Long distance effect

Directly evaluate second order weak process on a Lattice



## Summary of the method

Neglect CP violation, K<sub>L</sub>-K<sub>S</sub> mass difference is given by :

$$\Delta M_K = 2 \mathcal{P} \int dE_n \frac{\langle \overline{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle}{M_K - E_n}$$

Two parts to calculate  $\Delta M_K$ :

- √ Evaluate lattice four point function
- Correct finite volume
   effect

Principal part should be taken when dealing with  $M_K = E_n$  singularity



## Lattice four point function

#### Four point correlator:

$$G(t_f, t_1, t_2, t_i) = \langle \overline{K^0}(t_f) H_W(t_2) H_W(t_1) K^{0\dagger}(t_i) \rangle$$



- t<sub>1</sub>-t<sub>i</sub> and t<sub>f</sub>-t<sub>2</sub> should be sufficiently large to get a kaon
- Fix ti and tf, correlator depends only on t2-t1
- Refer to this quantity as unintegrated correlator

## Integrated Correlator

Integrate the unintegrated correlator over a time interval:

$$\mathscr{A} = \frac{1}{2} \sum_{t_1=t_a}^{t_b} \sum_{t_2=t_a}^{t_b} \langle \overline{K^0}(t_f) H_W(t_2) H_W(t_1) K^{0\dagger}(t_i) \rangle$$



- t<sub>f</sub>-t<sub>b</sub> and t<sub>a</sub>-t<sub>i</sub> should be sufficiently large to get a kaon
- Fix ti and tf, correlator depends only on tb-ta
- Refer to this quantity as integrated correlator

#### After inserting a sum over intermediate states one obtains:

$$\mathscr{A} = N_K^2 e^{-M_K(t_f - t_i)} \left\{ \sum_{n \neq n_0} \frac{\langle \overline{K}^0 | H_W | n \rangle \langle n | H_W | K^0 \rangle}{M_K - E_n} \left( -T - \frac{1}{M_K - E_n} + \frac{e^{(M_K - E_n)T}}{M_K - E_n} \right) + \frac{1}{2} \langle \overline{K}^0 | H_W | n_0 \rangle \langle n_0 | H_W | K^0 \rangle T^2 \right\}$$

$$= 5$$

 $T = t_b - t_a + 1$  is the integration range, the terms in correlator fall into five categories:

- I.Linear term, the coefficient gives finite volume approximation to  $\Delta M_K$
- 2. Constant term, which is trival
- 3. Exponential decreasing term, come from states  $E_n > M_K$
- 4. Exponential increasing term, come from states  $E_n < M_K$ : Subtract from
- 5. Quadratic term, come from state  $E_n=M_K$  correlator

Subtract from correlator

## Correct finite volume effect

#### Finite Volume:

- $\Delta M_K$  is given by finite volume sum
- Tune lattice so

 $E_{\pi\pi} = M_K$ 

• Use degenerate perturbation theory, relate  $E_{\pi\pi}$  with  $\Delta M_K$ 

Infinite volume:

- ΔM<sub>K</sub> is given by infinite volume integral
- π-π phase shift relate to ΔM<sub>K</sub> through kaon pole

Luscher condition:

$$\phi(E) + \delta_0(E) + \delta_W(E) = n\pi$$

## Result for $\Delta M_K$

#### Leading order term

- Tune volume so  $M_K = E_{\pi\pi}$
- Remove ππ state



The finite volume correction is not done in this calculation

## Setup of the calculation

#### Lattice ensemble:

- 16<sup>3</sup>×32×16, 2+1 flavor DWF
- Inverse lattice spacing 1.73(3) Gev
- $M_{\pi} = 421$  Mev,  $M_{K} = 559$ Mev
- 800 configurations, each separated by 10 time units



- Kaon wall sources at  $t_i = 0$  at  $t_f = 27$
- Weak Hamiltonian act between  $t_a$ =4 and  $t_b$ =23

#### Effective weak Hamiltonian

The  $\Delta S=I$  effective weak Hamiltonian in a 4 flavor theory:

$$H_W = \frac{G_F}{\sqrt{2}} \sum_{q,q'=u,c} V_{qd} V_{q's}^* (C_1 Q_1^{qq'} + C_2 Q_2^{qq'})$$

Here we only include current-current operators:

$$Q_1^{qq'} = (\bar{s}_i d_i)_{V-A} (\bar{q}_j q'_j)_{V-A}$$
$$Q_2^{qq'} = (\bar{s}_i d_j)_{V-A} (\bar{q}_j q'_i)_{V-A}$$

All the penguin operators are neglected, since they are highly suppressed because of GIM cancellation

# Type I diagrams



# Type 2 diagrams



# Type 3 digrams, not calculated



# Type 4 diagrams, not calculated



## π<sup>0</sup> intermediate state

 $\pi^0$  intermediate state contributes an exponentially increasing term in the integrated correlator, which must be identified and removed. In this non unitary calculation,  $\pi^0$  and  $\eta$  have same mass, since only up quark can appear in our intermediate state, we define  $\pi^0=i\bar{u}\gamma_5 u$ , calculate following diagrams to compute kaon to pion decay amplitude :



## Result without GIM cancellation

- Both operators are Q<sub>1</sub>
- Without GIM, there will be divergent short distance effect
- The dependence of correlator on time is almost linear imply that largest contribution comes from short distance





#### Artificial cutoff

We can impose an artificial cutoff, require  $|x_2 - x_1| \ge r$  while doing integral :



## Quadratic divergence

Mass difference is given by the slope of integrated correlator plot while the integration range is large enough.

$$\Delta M_K(R) = \frac{a}{R^2} + b$$



#### GIM remove the divergence in short distance:

## No charm quark



#### I Gev charm quark



#### Quadratic Fit:

$$\Delta M_K(m_c) = a \ m_c^2 + b$$



Is I Gev charm too heavy?

Quadratic dependence on m<sub>c</sub> will be cutoff buy lattice spacing if charm is too heavy.

The fitting result suggest we haven't reach that region

## Long distance effect

Investigate unintegrated correlator:

$$G(T; t_i, t_f) = N_K^2 e^{-M_K(t_f - t_i)} \sum_n \langle \overline{K^0} | H_W | n \rangle \langle n | H_W | K^0 \rangle e^{-(E_n - M_K)T}$$

Here T is the time separation between to weak Hamiltonian



- Separate the Hamiltonian into two parity channel:
  - Parity conserving channel, long distance effect dominate by  $\pi^0$  intermediate state
  - Parity violating channel, long distance effect dominate by  $\pi\pi$  intermediate state
- Use various kaon masses

# Parity conserving channel

In long distance, correlator dominate by  $\pi^0$  term :

$$G(T; t_i, t_f) = N_K^2 e^{-M_K(t_f - t_i)} \langle \overline{K^0} | H_W | \pi^0 \rangle \langle \pi^0 | H_W | K^0 \rangle e^{-(E_\pi - M_K)T}$$





# Parity conserving channel

- Points are the fitting results from unintegrated correlators at various kaon masses
- Horizontal line is the "exact" pion mass given by two point correlator calculation



## Parity violating channel

In long distance, correlator dominate by  $\pi\pi$  term :

$$G(T; t_i, t_f) = N_K^2 e^{-M_K(t_f - t_i)} \langle \overline{K^0} | H_W | \pi \pi \rangle \langle \pi \pi | H_W | K^0 \rangle e^{-(E_{\pi \pi} - M_K)T}$$



We expect to see plateau at long distance :

- No signal at long distance
- Good signal from type 2 diagrams only

## Parity violating channel

Type I



Noise behave like TT, exponentially increasing noise to signal ratio

Type 2



The signal from type 2 contractions don't have such noise

## Parity violating channel

- Points are the fitting results from unintegrated correlators at various kaon masses, type 2 contractions only
- Horizontal line is the "exact" 2 pion mass given by two point correlator calculation



## Mass difference

$$M_{\pi}$$
 = 421 Mev  $M_{c}$  = 1 Gev

- $M_{\pi}$  = 421 Mev Only included statistical error
  - Finite volume effect not corrected

$$\Delta M_K^{exp} = 3.483(6) \times 10^{-12} \text{ MeV}$$

| $M_K \text{ (Mev)}$ | $\Delta M_K^{11}$ | $\Delta M_K^{12}$ | $\Delta M_K^{22}$ | $\Delta M_K \ (\times 10^{-12} \ \mathrm{Mev})$ |
|---------------------|-------------------|-------------------|-------------------|-------------------------------------------------|
| 563                 | 6.38(14)          | -2.64(14)         | 1.47(8)           | 5.52(24)                                        |
| 707                 | 8.90(21)          | -2.96(23)         | 2.10(12)          | 7.38(37)                                        |
| 775                 | 10.63(27)         | -3.18(30)         | 2.48(15)          | 8.61(49)                                        |
| 839                 | 12.56(34)         | -3.62(40)         | 2.89(20)          | 9.93(65)                                        |
|                     | •                 |                   |                   | *                                               |

## Conclusions and future plans

- Lattice calculation of  $\Delta M_K$  is possible :
  - √ Use GIM to remove divergence in short distance
  - √ Remove π exponentially term
  - Use on-shell  $K \to \pi\pi$  kinematics, remove quadratic term from integrated correlator
  - Add finite volume correction term
- Include type 3 and type 4 diagrams in future
- Use Low mode averaging or A2A to collect statistics more efficiently

## Operator mixing and renormalization

#### Three group of operators: Equivalent basis:

$$\tilde{Q}_{1} = (\bar{s}_{i}d_{i})_{V-A}(\bar{u}_{j}u_{j})_{V-A} 
- (\bar{s}_{i}d_{i})_{V-A}(\bar{c}_{j}c_{j})_{V-A} 
\tilde{Q}_{2} = (\bar{s}_{i}d_{j})_{V-A}(\bar{u}_{j}u_{i})_{V-A} 
- (\bar{s}_{i}d_{j})_{V-A}(\bar{c}_{j}c_{i})_{V-A} 
Q_{1}^{cu} = (\bar{s}_{i}d_{i})_{V-A}(\bar{c}_{j}u_{j})_{V-A} 
Q_{2}^{cu} = (\bar{s}_{i}d_{j})_{V-A}(\bar{c}_{j}u_{i})_{V-A} 
Q_{1}^{uc} = (\bar{s}_{i}d_{i})_{V-A}(\bar{u}_{j}c_{j})_{V-A} 
Q_{2}^{uc} = (\bar{s}_{i}d_{j})_{V-A}(\bar{u}_{j}c_{i})_{V-A}$$

$$Q_{+}^{X} = Q_{1}^{X} + Q_{2}^{X}$$
 (84,1)  
 $Q_{-}^{X} = Q_{1}^{X} - Q_{2}^{X}$  (27,1)

$$X = \sim$$
, cu, uc  $SU(4) \times SU(4)$ 

- Operators will not mix with penguin
- Renormalization for three groups of operators should be identical

#### Correct finite volume effect

- Singular energy denominator I/(M<sub>K</sub>-E<sub>n</sub>) will introduce uncontrolled errors
- Use generalized Lellouch-Lucsher method :
  - Tune lattice so  $E_{\pi\pi} = M_K$
  - Finite volume  $E_{\pi\pi}$  depend on finite volume sum
  - Infinite volume  $\pi$ - $\pi$  resonant phase shift  $\delta_W$  depend on infinite volume integral
  - Luscher condition relate them :

$$\phi(E) + \delta_0(E) + \delta_W(E) = n\pi$$

## Finite volume energy

- Let  $|n_0\rangle$  be the  $\pi$ - $\pi$  state degenerate with kaon
- Second order perturbation theory

$$\begin{pmatrix}
M_K + \sum_{n \neq n_0} \frac{|\langle n|H_W|K\rangle|^2}{M_K - E_n} & \langle K|H_W|n_0\rangle \\
\langle n_0|H_W|K\rangle & E_{n_0} + \sum_{n \neq K} \frac{|\langle n|H_W|n_0\rangle|^2}{E_{n_0} - E_n}
\end{pmatrix}$$

•π-π state energy is given by:

$$E_{\pm} = M_K \pm \langle K | H_W | n_0 \rangle$$

$$+ \frac{1}{2} \left\{ \sum_{n \neq n_0} \frac{|\langle n | H_W | K \rangle|^2}{M_K - E_n} + \sum_{n \neq K} \frac{|\langle n | H_W | n_0 \rangle|^2}{E_{n_0} - E_n} \right\}$$

## Infinite volume scattering



#### Total phase shift is given by:

$$\delta(E) = \delta_0(E) + \arctan\left(\frac{\Gamma(E)/2}{M_K + \Delta M_K - E}\right) - \pi \sum_{n \neq K} \frac{\langle n|H_W|\pi\pi\rangle|^2}{E - E_n}$$

#### Require that:

$$\delta(E_{\pm}) + \phi(E_{\pm}) = n\pi$$